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Introduction 

The main purpose of this project was to produce a digital notch filter that is able to adapt its 

coefficients in order to obtain a specified behavior. Adaptive notch filtering is a well-studied 

technique for removing or retrieving sinusoids of unknown frequencies from additive 

broadband noise. In general a notch transfer function has two or more coefficients 

determining bandwidth and peak frequency of the notch. To obtain coefficients adaptation lot 

of methods can be used, between which we propose: an alternate network structure (par. 2), a 

structurally induced bandpass realization (par. 3) and a planar-rotation lattice filter based 

structure, that is the main topic of this paper. Instead of minimizing an output error cost 

function or following a gradient descendent procedure, our filter is designed to achieve a 

stable associated differential equation, producing advantages as unbiased frequency 

estimation and faster convergence.   

This report is organized as follows. 

Section 1 introduces to the argument of notch filters. 

Section 2 illustrates the lattice structure proposed by N. I. Cho, C. H. Choi and A. U. Lee and is 

almost entirely taken from [1]. 

Section 3 describes the advantages of using biquads (bilinearly transformed second order) 

filters and is almost entirely taken from [2]. 

Section 4 proposes the main topic of this paper, describing the notch filter, invented by P. A. 

Regalia, that makes use of  a second order lattice filter obtained from a particular planar 

rotation structure. Also this chapter is almost entirely taken from the bibliography [4]. 

Section 5 makes some comparative simulation between the previous filters, including a brief 

description of advantages of the proposed one. 

Section 6 includes other results of simulations made with the Regalia’s filter, in particular 

exploring the possibilities of forming series or parallel connections of this filter in case of 

multiple frequency input signals, and then makes some conclusions. 

 

1. About Notch Filters 

 
The ideal notch transfer function has the following frequency response: 

 

 
 

A standard approximation is this one: 



 

 
 

Where N(z) is a polynomial with its zeros on the unit circle and thus 1/N(z) is a all-pole filter 

with poles near the unit circle. This kind of structure manifest two great weaknesses: 

1) The poles near the unit circle make it possible that, using finite precision 

instruments like computers, a data approximation may introduce a little shift 

outside the stability circle, making the system explode. 

2) If the gain ρ is chosen in order to maintain the poles inside the unit circle, this can 

introduce an undesired bias in the frequency estimation. 

Two solutions of this problem are presented in the next two chapters, both making use of a 

IIR structure preserving stability constraints. 

 
 

2. IIR lattice notch filter based on the cascade of two allpass 

filters 

 
In 1988 N. I. Cho, C. H. Choi and A. U. Lee proposed a new, very simple ALE (Adaptive Line 

Enhancer) employing a lattice-type notch filter, which is adapted using adaptive algorithms 

related to the lattice FIR filters. Two algorithms were proposed: the first algorithm adapts 2p 

coefficients for p sinusoids, the second one adapts only one coefficient per sinusoid restricting 

the zeros of the filters to the unit circle. 

They employed a lattice IIR filter which can be viewed as a cascade of all-pole and all-zero 

lattice filters, as shown in the figure below. 

 

 
Nam Cho lattice structure 

 



The transfer function of the filter is   
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where a0 and a1  can be expressed in terms of k0 and k1, obtaining only 2 coefficients as 

mentioned before. In particular if α is close to 1, the following approximation hold: 

 

a1=αk1 

    a0=k0 

 

Stability conditions imposed |a0|<1 and |a1|<1. This is true if |k0| and |k1| are less than 1. As 

standard algorithms adapt filter coefficients so as to minimize the mean-squared values of the 

signals in the next stage, they adapted k0 and k1 to minimize respectively the squared value of 

s1, r1 and s2,  r2. The following recursive equations are then derived: 
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where λ is a forgetting factor. 

Restricting the zeros of the lattice filter of Fig. to the unit circle implies fixing k1 to 1. Now k0 

becomes the only parameter to be adapted, in order to minimize the time average of ������ 
and ������. As can be shown, if k1=1 then r2=s2, implying that only one of them has to be taken 

into account. We can express s2 in terms of s0 and r0 as follows: 
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It can be shown that the value of k0 that minimizes the time average of ������ can be computed 

recursively by 
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Because in this case is not guaranteed that |D(n)| will always be greater than |C(n)|, it is 

possible that k0 becomes greater than 1. To maintain the stability constraints is thus 

necessary to use a smoothed version of k0 , that we call �	$  and is obtained as 
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In conclusion this method requires four additional states in addition to four internal states for 

the all-pole/all-zero cascade, while the method we are going to propose needs only two 

internal states as will be shown in Ch.  

 

 

3. Detection of sinusoids using a cascade of bilinear notch 

filters 

This kind of approach was proposed by T. Kwan and K. Martin in 1989. It makes use of 

biquads (bilinearly transformed second order filters): first a bilinear bandpass filter is 

realized, then a bilinear notch filter is obtained subtracting the input and the output of the 

bandpass filter.   This well-known technique was usually adapted following the Gauss-Newton 

Update, that is a gradient based method that requires a computationally expensive matrix 

inversion. The algorithm they proposed had the purpose of obtaining almost the same 

behavior of Gauss-Newton one without matrix inversions. 

The proposed notch filter has the structure shown below: 

 

 
Kwan constant bandwidth biquad 

 

The transfer function from the input to the bandpass output is given by 
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Where k1 and k2 are the filter parameters that control respectively the peak frequency and the 

bandwidth of the filter. These two parameters also make it possible to easily and precisely 

determine the frequency of the sinusoids without any computational expensive Fourier 

Transform, as given by the formula 
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For k1 and k2 small 
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By keeping k2 fixed, they were able to track different resonant frequencies maintaining the 

bandwidth of the filter constant. The proposed update law needs an additional filter in order 

to obtain a sensitivity function that conveys informations about the first order derivative (or 

gradient) of tho output error power with respect to changes in the filter coefficients. This new 

filter can be obtained from the previous one by taking the first filter bandpass output as input 

and the intermediate stage named s’(n) in Fig. as sensitivity output. The resulting update 

equation is the one shown below: 
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Where e(n) is the first filter notch output , ||s’(n)||2 can be approximated by squaring the 

instantaneous value s’(n) and passing the result through a lowpass filter and Pmin is a constant 

that prevent division by zero (typically can be taken between 0.001 and 0.01). 

We can conclude that this process is, for small changes around the optimum solution, a good 

approximation of Newton-Gauss gradient based method, but we must also take into account 

that the update portion needs a second filter of the same complexity than the notch one and 

that for extremal frequencies this algorithm manifests great difficulties, as shown in Ch. 

 

 

 

 

 

4. The proposed lattice structure 

 
In 1991 A. Regalia proposed then a new technique for retrieving sinusoids that, starting from 

the knowledge that lays at the base of the previous examples, is greatly more efficient and less 

expensive. 

As mentioned in the Introductions, this algorithm is designed to achieve a stable differential 

equation associated to the update law instead of minimize an output error cost function. The 

realization is simpler than the lattice scheme proposed in Ch.2, as no FIR postfilter is 

necessary, and simpler than the adaptive bandpass realization of Ch.3, as no additional 

gradient filters are necessary. 

The core of this structure is explained in the rows that follows. 

 

As already seen in previous examples, a well-known technique for obtaining simultaneously a 

notch and a bandpass filter is to pass the input signal into a allpass structure and then sum or 

subtract the output of this structure in respect to the original input signal, as shown in next 

figure. 



 
Regalia notch filter scheme 

 

Calling A(z) the allpass transfer function, we obtain the notch and bandpass outputs 

respectively as: @��� � 
� A� � "���B   and   C��� � 
� A� � "���B 
 

We choose A(z) as the second order lattice filter obtained from the planar rotation structure 

shown in the figure that follows. 

 

 
The allpass filter structure 

 

Here each rotation angle θk (k=1, 2) become the adjustable parameters in an adaptive 

realization. θ1 controls the notch frequency ω0 and θ2 controls the notch bandwidth B, as can 

be seen in these two equations: 
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To tune the notch frequency parameter D1 the following algorithm is proposed: 
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where e(n) is the output of the filter F(z) and L
��� and ;��� can be obtained by 
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being λ a forgetting factor.  

Notice that the product <���L
��� is not an estimate of the gradient 
RSA)6���BRT3 , and is not a 

minimization of an output error cost function. Instead, this update equation is chosen in order 

to obtain a stable associated differential equation 
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In particular, some calculations will show that  
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Where α1 and ω1 are the amplitude and angular frequency of the input sinusoid.  

This equation is asymptotically stable to a stationary position satisfying  

 /01D
�]� � �MN�(
. 

 

As can be seen in next figure, the value of the associated equation tends to zero after few 

samples, indicating that convergence is always reachable.  

 

 
Convergence analysis 
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In conclusion we propose a method that requires only two internal states and no additional 

postfilters. In addition to this, the implemented system shows a very better behavior at 

critical frequencies than filters presented before, as we can see in next Chapter. 

 

 

5. Competitive simulation examples 
 

Simulation results are presented as comparison between the three algorithms seen before. 

For consistency, the three schemes are adapted using the same adaptation parameters: 

- the stepsize μ(n) is adapted following the iterative adaptation seen in Ch. 4 (replacing 

x1(n) by s’(n) where necessary); 

- the pole radius is set for all the algorithms to a value of 0.97; 

- the forgetting factor λ is chosen equal to 0.99. 

Next figure shows the frequency estimation error (in Hertz) after convergence.  

 

 
Frequency estimation after convergence 
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Comparison results are taken for 20 equidistant frequencies, from 0 to Nyquist frequency. 

For each frequency i the input signal si(n) was corrupted by the same additive white noise s1, 

as can be seen below: 

s(i,:)=alpha(i)*sin(omega(i)*t + phi(i))+s1; 

 

where α is the frequency amplitude, randomly chosen in {1, 2, …., 10}, ωi is the i-th 

frequency and φi is the i-th phase shift. The estimates were time averaged from 100 

samples, after convergence is reached. As we can see, all three schemes yield acceptable 

accuracy for midband frequencies, but only the proposed algorithm achieve good 

estimation also at near critical frequencies. Three main advantages of our method are 

shown: 

 

1) while the scheme proposed by Kwan requires a large initial bandwidth, our 

approach is able to track sinusoids very distant from the original notch 

position even if the notch bandwidth is short. This fact is due to the cascade 

of bandpass and all-pole filters in the first one, that make the input sinusoid 

give a comparatively small contribution to the gradient filter output. Instead, 

the Regalia scheme, achieve good convergence because the regressor signal 

x1(n) is obtained from an all-pole (only) filtered version of the input, making 

this last a bigger contribution to the coefficient adaptation. 

 

3) In limiting case, when the frequency of the input becomes equal to the Nyquist 

limit, the allpass portion of the Regalia scheme degenerates to the one shown in 

next figure, and the pole at z=1 is both unobservable and uncontrollable. In Kwan 

method, instead, pole z=1 is still unobservable, but remains controllable and thus is 

susceptible of unbounded growth from input excitation, making the system in fact 

unstable. 

 

Degenerated Regalia filter 

 This behaviour near critical frequencies can be seen in the following picture, where 

only the sinusoidal components are present, while the white noise component has been 

removed. 



 

Extreme frequencies behaviour (in absence of noise) 

 

4)  The proposed scheme simply requires a difference operation to obtain the instant 

frequency estimation, while the other two require inverse trigonometric relations. 

 

A second simulation is proposed, where the input frequency is changed every 200 samples. 

The frequency signal was corrupted by additive white noise, with SNR of 3dB. The forgetting 

factor λ is fixed to 0.97, the pole radius is chosen equal to 0.92. As can be seen in next figure, 

the proposed scheme shows superior tracking of the one proposed by Kwan, because its 

regressor signal x1(n) is obtained from an all-pole (rather than an allpass-allpole cascade) 

filtered version of the input signal. Thus the sinusoidal component exerts a sufficient 

influence on the parameter evolution when the notch frequency is displaced from the signal 

frequency (as already seen in Par.1 of this chapter). 



 

Speed of convergence in case of changing frequency input 

 

 

6. Other Results 

 

As final results, we propose three practical implementations using combinations of N of the 

filters inspired by Regalia. For each of them a simulation of extraction of multiple sinusoids is 

presented. The algorithms take as input signal a signal obtained from the summation of N 

equally spaced sinusoids of equation 

s(i,:)=alpha(i)*sin(omega(i)*t + phi(i)); 

 

adding then to them a white noise as disturb.  

 

Subsequent application of the proposed scheme 

The first, proposed process of extraction of the N sinusoids is generated as a successive 

repetition of the single sinusoid method, letting the notch output become the new filter input, 



once that convergence is reached. The result is that each filter extract a single sinusoid, letting 

the other pass (if the notch bandwidth is strict). At the output of the last notch only the white 

noise is present. 

 

Performance analysis in case of only one filter for multiple sinusoids 

As second point of this last chapter, we propose a statistical approach in analyzing how the 

single-filter structure behaves in presence of multiple sinusoids as input signal u(n). As results 

of this step, we found six possibilities that can be investigated. Starting from a signal u(n) 

formed by white noise added to only two sinusoids of frequency 3000Hz and 6000Hz, we 

have proposed six experimentations and results report the number of times the system 

converge toward one frequency over 1000 simulations: 

1) the starting θ1 is taken at 4500Hz and sinusoids amplitude is the same; 
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Statistical results over 1000 sample tests 

2) the starting θ1 is taken at 3100Hz and sinusoids amplitude is the same; 

 

Statistical results over 1000 sample tests 

3) the starting θ1 is taken at 5900Hz and sinusoids amplitude is the same; 

 

Statistical results over 1000 sample tests 



4) the starting θ1 is taken at 4500Hz and the amplitude of 6000Hz sinusoid is doubled; 

 

Statistical results over 1000 sample tests 

5) the starting θ1 is taken at 1700Hz and the amplitude of 6000Hz sinusoid is doubled; 

 

Statistical results over 1000 sample tests 

6) the starting θ1 is taken at 7300Hz and the amplitude of 3000Hz sinusoid is doubled. 

 

Statistical results over 1000 sample tests 



 

We can simply read from this figures that the presence of two equal-amplitude sinusoids 

converges towards one of them without a specific rule; if instead one of the two sinusoids has 

amplitude that is the double of the other’s, the system converges towards that sinusoid in 

almost all cases. 

 

Series of two filters 

The tested scheme was this following one: 

 

Two-filter series 

The input signal u(n) is again obtained from the sum of a white noise of amplitude mu and the 

two sinusoids seen before. Three cases of study are proposed and for each of them 

simulations with mu =1 and mu =0.1 are done: 

1) the starting θ1 of both filters is taken at 4500Hz and sinusoids amplitude is the same; 

 

Frequency estimation of the two filters for mu =1 



 

Frequency estimation of the two filters for mu =1 (dual case) 

 

 

Frequency estimation of the two filters for mu =0.1 

 

 

2) the starting θ1 of both filters is taken at 4500Hz and the amplitude of 6000Hz sinusoid 

is doubled; 



 

Frequency estimation of the two filters for mu =1 

 

 

Frequency estimation of the two filters for mu =0.1 

 

3) the starting θ1 of both filters is taken at 4500Hz and the amplitude of 3000Hz sinusoid 

is doubled; 



 

Frequency estimation of the two filters for mu =1 

 

 

Frequency estimation of the two filters for mu =0.1 

 

It is visible that in the first case the two filters converge one towards one frequency and the 

other towards the second one, presenting the mu =0.1 test more difficulties, because of more 

fast convergence towards the same frequency and then a slow-time correction. In the second 

and the third experimentations, the second filter convergence is deeply influenced by the first 

filter presence: in the second case a very slow coefficient adaptation due to step-size 

adaptation seen in Ch. 4 results, while a sort of instability is shown in the third and last case, 

in which only a decrement of mu can prevent this sort of behavior. 

 



Parallel of two filters 

The tested scheme was this following one: 

 

Two-filter parallel scheme 

where N Regalia filters are collected in parallel and the e(n) of each filter (except the first one) 

is the result of the subtraction of the usual and the previous filters bandpass outputs. 

The input signal u(n) is one more time obtained from the sum of a white noise and two 

sinusoids of 3000Hz and 6000Hz. The same three cases seen before are studied. The results 

are the following: 

1) the starting θ1 of both filters is taken at 4500Hz and sinusoids amplitude is the same; 



 

Frequency estimation of the two filters 

 

2) the starting θ1 of both filters is taken at 4500Hz and the amplitude of 6000Hz sinusoid 

is doubled; 

 

Frequency estimation of the two filters 

 

3) the starting θ1 of both filters is taken at 4500Hz and the amplitude of 3000Hz sinusoid 

is doubled. 



 

Frequency estimation of the two filters 

 

As can be evident from this figures, both frequencies are extracted because each adaptation 

signal e(n) does contain all information about the current filter without the presence of the 

frequency towards which previous filters are converging. This results are the best part of this 

project, making us now able to use this structure to obtain a simultaneous multiple frequency 

band pass filter or, as shown in the scheme seen before, a simultaneous multiple frequency 

notch filter. 
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